Резервный источник энергии для загородного дома

Кому пригодятся


Современному человеку трудно обходиться без привычных «благ цивилизации»: бытовой техники, мобильной связи, интернета, но иногда сфера деятельности вынуждает отказываться от привычного комфорта. Геологи, нефтяники, рыбаки, охотники, оленеводы, часто оказываются в ситуациях, когда использование традиционных источников энергии невозможно. В таких случаях портативная солнечная электростанция может стать альтернативным источником электроснабжения. Не обойтись без автономного источника электропитания, если требуется освещение временных сооружений, находящихся на больших расстояниях от линии электропередачи.

Служащие МЧС, имея в своем арсенале такие электростанции, в экстремальных условиях могут быстро развернуть комплекс аварийного электропитания и использовать его в полевых условиях, обеспечивая бесперебойную работу необходимого электрооборудования.

Что такое ветрогенераторы и как их использовать

Ветрогенератор – это оборудование, которое преобразует энергию ветра в электрическую. Плюс заключается в том, что источник электроэнергии есть всегда, и бесплатный. Но есть в этом случае и ограничение – по месту установки. Монтировать генераторы целесообразно в регионах, где среднегодовая скорость ветра достигает высоких отметок. Это равнинные и прибрежные районы.

Если вы решили купить ветрогенератор для дома, должны знать, что сам по себе он не даст никакого толку. Чтобы система работала полноценно, в нее должны входить следующие элементы:

  • инвертор;
  • контроллеры;
  • аккумулятор;
  • кабели;
  • соединители и крепежи.

Сразу обозначим, что в эксплуатации ветрогенераторов может возникать ряд проблем, о которых следует знать, чтобы избежать впоследствии разочарования. Вот основные моменты:

  • высокая стоимость оборудования;
  • если среднегодовая скорость ветра в регионе маленькая, установка не окупится;
  • оборудование работает шумно, поэтому устанавливать его нужно подальше от дома. Обычно ветряные электростанции устанавливают в полях, используют в промышленных целях. Это оптимальное решение для их применения.

Виды ветряных генераторов

По типу крепления ротора существуют модификации:

  • Горизонтальные – отличаются минимальным количеством материалов для изготовления и большим КПД. Минусы прибора заключаются в высокой монтажной мачте и сложности механической части.
  • Вертикальные – работают в большом диапазоне ветровой скорости. Специфика генератора – необходимость дополнительной фиксации мотора.

По количеству лопастей существуют одно- или многолопастные модели. По материалу лопасти классифицируются на парусные и жесткие. Винтовой шаг установки бывает изменяемым (можно выставить рабочую скорость) и фиксируемым.

Конструкция ветрогенератора


Конструкция ветрогенератора

Готовый ветряной генератор состоит из таких частей:

  • вышка – ставится в ветреной зоне;
  • лопастный генератор;
  • контроллер лопастей – преобразует переменный ток в постоянный;
  • инвертор – трансформирует постоянный ток в переменный;
  • накопительный аккумулятор;
  • резервуар для воды.

Накопительная АКБ сглаживает разницу в сезон ветров и период штиля.

Изготовление тихоходного ветрогенератора из генератора машины


Создание ветрогенератора из автомобильного генератора

Поскольку комплект для сборки ветрогенератора стоит от 250 до 300 тыс. руб, конструкцию целесообразно сделать собственноручно. Понадобится генератор автомобиля и аккумуляторная батарея.

Лопасти обеспечивают работу других устройств ветряка. Самостоятельно их можно изготовить из ткани, металла или пластиковой трубы следующим образом:

  1. Выбрать материал с хорошей ветроустойчивостью – толщиной от 4 см.
  2. Рассчитать длину лопасти так, что диаметр трубы равнялся 1/5.
  3. Обрезать трубу и применять ее в качестве шаблонов.
  4. Пройтись по краям всех элементов наждачкой для удаления неровностей.
  5. Зафиксировать пластиковые лопасти на диске из алюминия.
  6. Произвести балансировку колеса посредством фиксирования в горизонтальном положении.
  7. Обточить края ветрового колеса при вращении.


Мачта должна быть надежной, прочной и не раскачиваться

Проект изготовления мачты нужно начать с выбора материала. Понадобится стальная труба длиной 7 м и диаметром 150-200 м. При наличии препятствий колесо поднимается выше их на 1 м.

Для дополнительной устойчивости конструкции изготавливаются колышки под растяжку из стального или оцинкованного троса 6-8 мм в толщину. Мачту и колышки нужно забетонировать.

Процесс переделки автогенератора заключается в перемотке старторного узла и создании ротора на основе неодимовых магнитов. В приборе просверливаются отверстия под них. Магниты нужно ставить, чередуя полюса и заполнять пустоты эпоксидкой.

Ротор оборачивается бумагой для перемотки катушки в одном направлении по трехфазной схеме. На последнем этапе генератор тестируется – при 300 оборотах должно показывать 30 В.

Альтернативные ветровые источники тепла и электрической энергии собираются после изготовления поворотной оси. Понадобится труба с двумя подшипниками и хвостовая часть из оцинкованного листа 1,2 мм в толщину.

Генератор крепится к мачте посредством рамы их профтрубы. Расстояние от балки до лопастей должно быть больше 25 см. После сборки базовой конструкции монтируются контроллер заряда, инвертор и АКБ.

Изготовление системы своими руками

Для использования внутри квартиры или на даче в аварийных случаях своими руками можно собрать аккумулятор. Несколько бытовых аккумуляторов параллельно объединяются, подключаются к зарядному устройству, устанавливается инвертор. Пока работает централизованное энергоснабжение, электричество копится в батареях, включенных в розетку. Когда ток исчезает, инвертор поставляет его в проводку. Можно использовать как переносное устройство.

Для создания своими руками питания целого дома на постоянной или длительной основе потребуется более серьезный подход. Здесь предпочтительно оборудовать помещение на роль котельной, где будет стоять основа техники. Потребуются генератор, мощные аккумуляторы (можно несколько автомобильных), котлы, инверторы, несколько солнечных панелей под выбранную систему. При наличии определенных знаний такая работа стоит свеч и выйдет дешевле многих готовых установок.

Однако и риск допустить ошибку расчетов и подключения тоже не мал.

Важность освоения альтернативных источников энергии

Освоение и широкое использование альтернативных источников энергии крайне важно для всех современных людей, независимо от мест проживания и близости к действующим энергоресурсам. Причины этого:

  • чем больше источников энергии, тем меньше загруженность магистральных линий
  • состояние многих электростанций требует срочной модернизации, реконструкции или ремонта. Срок службы многих сооружений подходит к концу, вынуждая задумываться о способах замещения старых источников новыми
  • возможность иметь свой, независимый источник электроэнергии освобождает пользователя от зависимости от ресурсоснабжающих компаний
  • экологическая чистота альтернативных источников намного предпочтительнее, чем опасность радиоактивных загрязнений или прорыва плотины с непредсказуемыми последствиями

Кроме этих неоспоримых достоинств ветроэнергетики, существует еще одно важное обстоятельство: обеспеченность отдаленных и труднодоступных регионов есть и будет под большим вопросом. Экономическое обоснование возможности проведения линии электропередач в эти места крайне отрицательное, отсутствие промышленных объектов или важных военных, исследовательских центров низводит вероятность создания магистрали до нуля

Вынужденный характер применения альтернативных вариантов усиливается постоянным ростом использования электроприборов как для связи, так и для прочих бытовых, медицинских или иных целей, необходимых для нормальной жизни в современном мире.

Солнечные генераторы лучше, чем обычные портативные генераторы на топливе?

 Большинство истинных преимуществ универсальной портативной электростанции на солнечной энергии заключается в том, насколько она удобна и экологична.

Короче говоря, перевешивают ли преимущества недостатки в действительности, зависит от того, для чего будет использоваться генератор, и от климата в этом месте.

Переносные генераторы на солнечной энергии идеально подходят для отдыха на природе, например, для рыбалки и кемпинга. Они не производят никакого шума, поэтому они не могут беспокоить соседей или дикую природу, и они не выделяют никаких опасных паров, поэтому они являются экологически чистыми и безопасными.

Портативные электростанции «все в одном» также являются единственным реальным вариантом в качестве альтернативного источника электропитания для использования внутри помещений, поскольку они не выделяют никаких паров.

Генератор солнечной энергии также является идеальным спутником в путешествиях для профессионалов, работающих в автономных ситуациях.

Генератор солнечной энергии также является распространенным механизмом для поездок по бездорожью. Аккумулятор можно использовать для питания небольших электрических инструментов в случае поломки автомобиля или для запуска автомобиля.

Короче говоря, портативная электростанция на солнечной энергии является универсальным автономным источником электроэнергии, но она не подходит для всех целей.

Небольшие портативные генераторы солнечной энергии не подходят в качестве домашнего резервного генератора просто потому, что они, как правило, содержат гораздо меньше энергии, чем инверторный генератор или обычный портативный генератор. Модели солнечной энергии, которые обеспечивают достаточно электричества для питания основных бытовых приборов, намного больше и тяжелее, чем альтернативы, работающие на топливе, что делает их менее портативным вариантом, в этом случае.

Солнечная энергия также не является надежным источником энергии в регионах с ограниченными солнечными часами или непредсказуемыми погодными условиями. Например, переносная электростанция на солнечной энергии не получит достаточно солнечных часов для полной зарядки в нашей стране зимой.

Ветрогенераторы

В тех регионах, где ветер всегда в наличии (приморские районы, горные, степные), оптимальный вариант альтернативного источника электрического тока – ветровой генератор. В Америки эти установки применяются почти везде. Стоят, правда, они недешево, то именно с их помощью можно решать проблемы отсутствия электроэнергии.

Принцип получения тока здесь достаточно простой. Ветер давит на лопасти, которые приводя во вращение ротор электрического генератора. Последний выдает электрический ток. То есть, в установке используется принцип преобразования механической энергии в электрическую. Самое главное, что ветрогенераторы работают при минимальных порывах ветра, свыше 2 м/с. Если скорость не будет ниже 8 м/с, то генератор можно подключать к дому напрямую.


Принцип работы альтернативных источников энергии

Самая уязвимая часть оборудования – это аккумулятор, в котором скапливается электроэнергия. Он быстро выходит из строя, а стоит 25% от цены всей установки. Поэтому этот вариант получения альтернативной энергии лучше всего использовать не на накопление, а на потребление. Поэтому чаще всего ветровые генераторы подключаются к системам отопления и горячего водоснабжения напрямую. Кстати, оправданный и превосходный выход из положения.

Виды альтернативных источников энергии.

Энергия ветра, солнца, воды, биотопливо, тепло Земли относительно неисчерпаемы и возобновимы. Преимущества альтернативных источников энергии неоспоримы, поскольку они сохраняют природные ресурсы. Кроме того, они в гораздо большей мере соответствуют требованиям экологической безопасности.

Ветровая энергетика.

Принцип использования силы ветра заключается в превращении кинетической энергии в электрическую, тепловую, механическую. Для получения электрической энергии используют ветровые генераторы. Они могут иметь различные технические параметры, размеры, конструкции, горизонтальную или вертикальную ось вращения. Паруса – классический пример использования силы ветра в морском транспорте, а ветряная мельница – преобразования в механическую энергию.

Диаметр лопастей и высота их расположения определяют мощность ветрогенератора. При силе ветра от 3 м/с генератор начинает вырабатывать ток и достигает максимальной величины при 15 м/с. Сила ветра свыше 25 м/с является критической – генератор отключается.

Гелиоэнергетика — дар Солнца.

Солнечная энергия как альтернативный источник энергии – естественное продолжение жизнетворящей миссии Солнца на нашей планете. Но пока человечество не научилось использовать ее напрямую. В настоящее время в качестве преобразователей солнечной энергии в электрическую применяют солнечные батареи, а для тепловой – солнечные коллекторы. Кроме того, в некоторых случаях используют совмещение двух видов.

Гелиотехнология заключается в нагреве поверхности солнечными лучами и в использовании нагретой воды для горячего водоснабжения, отопления или использования в паровых электрогенераторах. Для преобразования энергии солнца в тепловую используют солнечные коллекторы. Их общая мощность зависит от количества и мощности отдельных устройств, которые включены в систему солнечной или тепловой станции.

Солнечные батареи подразделяют на:

  • кремниевые
  • пленочные

Наибольшим спросом в настоящее время пользуются батареи с использованием кристаллов кремния, а самые удобные – пленочные. Кремниевые панели являются одним из лучших вариантов для частного дома.

ГЭС — использование силы воды.

Принцип действия турбин на гидроэлектростанциях заключается в воздействии силы воды на лопасти гидротурбины, которая вырабатывает электричество. Иногда к альтернативным видам энергии относят лишь те ГЭС, где не использованы мощные плотины, а выработка тока происходит под влиянием естественного течения воды. Это связано со значительным негативным воздействием мощных ГЭС на природные речные ландшафты, их обмелением и катастрофическими наводнениями.

Не вызывает возражений экологов использование естественной энергии морских и океанических приливов. Преобразование кинетической энергии в электрическую в этом случае происходит на специальных приливных станциях.

Геотермальная энергетика — тепло Земли.

Поверхность Земли излучает тепло не только в местах выброса горячих сейсмических источников, как, например, на Камчатке, но и практически во всех регионах планеты. Для извлечения тепла земли используют специальные тепловые насосы, а затем его преобразуют в электрическую энергию или используют как тепловую. Принцип действия установок базируется на законах термодинамики и физических законах поведения жидкостей и газа, в частности, фреона.

Тип конструкции насоса определяет первичный источник энергии, например, « грунт- воздух» или «грунт — вода».

Биотопливо.

Принцип получения биотоплива основан на переработке органических продуктов с помощью специальных установок. В ходе переработки вырабатывается тепловая или электрическая энергия. Виды биотоплива могут иметь жидкое, твердое или газообразное состояние. К твердым, например, относятся топливные брикеты, жидким – биоэтанол, к газообразным – биогаз. К его разновидностям относится свалочный газ, который образуется на свалках. Использование биогаза старых свалок помогает решить проблемы переработки отходов.

Солнце и ветер, как альтернативные виды энергии

Альтернатива получения, как тепла, так и электричества, для многих людей является актуальной Малая солнечная энергетика – это использование солнечных батарей на основе кремния, количество получаемой энергии зависит от количества батарей, широты местонахождения дома или иного помещения.

Интересна технология получения энергии с помощью генераторов, достаточно к генератору подключить контроллер заряда, и соединить всю схему с аккумуляторами, так можно получить достаточное количество энергии.

Актуально использование специальных термоэлектрических преобразователей энергии тепла в электричество, проще говоря, использование термопары из полупроводников. Одна часть пары нагревается, вторая охлаждается, в результате этого возникает свободная электроэнергия, которую можно использовать в быту. Можно использовать в качестве выработки энергии детей, достаточно соединить на детской площадке качели с динамо-машиной с тем, чтобы получать небольшой процент электроэнергии, который может использоваться для освещения детской площадки.

Тепловые насосы для отопления дома

Тепловые насосы используют все имеющиеся в наличии альтернативные источники энергии. Они отбирают тепло у воды, воздуха, грунта. В небольших количествах это тепло есть там даже зимой, вот его и собирает тепловой насос и перенаправляет на обогрев дома.

Тепловые насосы также используют альтернативные источники энергии — тепло земли, воды и воздуха

Принцип работы

Чем же так привлекательны тепловые насосы? Тем, что затратив 1 кВт энергии на ее перекачку, в самом плохом варианте вы получите 1,5 кВт тепла, а самые удачные реализации могут дать до 4-6 кВт. И это никак не противоречит закону сохранения энергии, ведь расходуется энергия не на получение тепла, а не его перекачивание. Так что никаких нестыковок.

Схема теплового насоса для использования альтернативных источников энергии

У тепловых насосов есть три рабочих контура: два наружных и они внутренний, а также испаритель, компрессор и конденсатор. Работает схема так:

  • В первом контуре циркулирует теплоноситель, который отбирает тепло у низкопотенциальных источников. Он может быть опущен в воду, закопан в землю, а может отбирать тепло у воздуха. Самая высокая температура, которая достигается в этом контуре — около 6°C.
  • Во внутреннем контуре циркулирует теплоноситель с очень низкой температурой кипения (обычно 0°C). Нагревшись, хладагент испаряется, пар попадает в компрессор, где сжимается до высокого давления. При сжатии выделяется тепло, пары хладагента разогреваются до температуры в среднем от +35°C до +65°C.
  • В конденсаторе тепло передается теплоносителю из третьего — отопительного — контура. Остывающие пары конденсируются, затем дальше попадают в испаритель. И далее цикл повторяется.

Отопительный контур лучше всего делать в виде теплого пола. Температуры для этого самые подходящие. Для радиаторной системы потребуется слишком большое число секций, что некрасиво и невыгодно.

Альтернативные источники тепловой энергии: откуда и как брать тепло

Но самые большие сложности вызывает устройство первого внешнего контура, который собирает тепло. Так как источники низкопотенциальные (тепла у низ мало), то для сбора его в достаточном количестве требуются большие площади. Есть четыре вида контуров:

  • Кольцами уложенные в воде трубы с теплоносителем. Водоем может быть любым — река, пруд, озеро. Главное условие — он не должен промерзать насквозь даже в самые сильные морозы. Более эффективно работают насосы, выкачивающие тепло из речки, в стоячей воде тепла передается намного меньше. Такой источник тепла реализуется проще всего — закинуть трубы, привязать груз. Только велика вероятность случайного повреждения.

  • Термальные поля с закопанными ниже глубины промерзания трубами. В этом случае недостаток один — большие объемы земляных работ. Приходится снимать грунт на большой площади, да еще на солидную глубину.

  • Использование геотермальных температур. Бурят некоторое количество скважин большой глубины, в них опускают контура с теплоносителем. Чем хорош этот вариант — мало места требует, но не везде есть возможность бурить на большие глубины, да и услуги буровых стоят немало. Можно, правда, сделать буровую установку самостоятельно, но работа все равно нелегкая.

  • Извлечение тепла из воздуха. Так работают кондиционеры с возможностью обогрева — отбирают тепло у «забортного» воздуха. Даже при минусовой температуре такие агрегаты работают, правда при не очень «глубоком» минусе — до -15°C. Чтобы работа была интенсивнее, можно использовать тепло от вентиляционных шахт. Закинуть туда несколько переть с теплоносителем и качать оттуда тепло.

Основной недостаток тепловых насосов — высокая цена самого насоса, да и монтаж полей сбора тепла обходится недешево. На этом деле можно сэкономить, сделав насос самостоятельно и также своими руками уложив контура, но сумма все равно останется немалой. Плюс в том, что отопление будет недорогим а действовать система будет долго.

Что собой представляет бытовой электрический генератор

Мобильная электростанция, или, как чаще их называют – электрогенератор, представляет собой достаточно сложное электромеханическое устройство. Его главная задача – преобразование энергетического потенциала жидкого или газообразного топлива вначале в кинетическую, а затем – в электрическую энергию для ее дальнейшего использования в бытовых или хозяйственных целях. Существует великое множество разнообразных моделей, но всегда и во всех присутствуют основные узлы и блоки, обеспечивающие функционирование этого прибора:

Общая схема бензиновой переносной электростанции

Двигатель внутреннего сгорания (поз. 1) вырабатывает кинетическую энергию – создает крутящий момент, который напрямую или через механизм передачи передается на вал генератора (поз. 4). Двигатель имеет встроенную систему пуска – стартер, ручной (как показано поз. 2) или (и) электрический. Подача топлива для работы двигателя осуществляется из встроенного бака (поз. 3) определенной емкости.

Преобразование кинетической энергии вращения вала в электрическую происходит в генераторе (поз. 4).

Вся конструкция скомпонована на одной раме (поз. 5), или в общем корпусе. Обычно предусматриваются удобные ручки для переноски электростанции, а иногда – и колесная тележка для облегчения перемещения тяжелых моделей.

Большинство современных переносных генераторов оснащены блоком управления (поз. 6) с контрольно-измерительными приборами, которые позволяют вести мониторинг работы как механической, так и электрической части агрегата. Некоторые модели не имеют такого блока, но обычно в них предусмотрена возможность его последующей установки опционально. В любом случае, имеется один или несколько выходов (розеток) (поз. 7) для подключения потребителей выработанной электроэнергии.

Приводы генераторов бывают дизельными, газовыми и бензиновыми

Силовой привод (двигатель) может быть дизельным, рассчитанным на продолжительное безостановочное функционирование. Обычно такие установки достаточно массивны, довольно шумные, и стоимость у них в 1,5 ÷ 2 раза выше, чем у бензиновых с примерно такими же характеристиками.
Если место установки электростанции газифицировано, то есть смысл приобрести агрегат, работающий на природном газе. Выпускаются и компактные модели, которые работают от сжиженного или природного газа из баллонов. Основные достоинства таких электростанций – высокий КПД, и самое дешёвое электричество – из-за невысокой цены газообразного топлива. Недостаток – очень высокая стоимость самих установок. Кроме того, они достаточно сложны в настройке, обслуживании, ремонте. Так что пока популярность газовых генераторов – невысока.
Наибольшей востребованностью у среднестатистического потребителя все же пользуются бензиновые генераторы – они наиболее мобильные, компактные, простые в эксплуатации, и

что немаловажно, самые доступные с точки зрения стоимости. Именно им и будет посвящено дальнейшее изложение.

Использоваться переносные бензиновые электростанции могут по-разному:

Генератор установлен стационарно в боксе в качестве резервного источника питания

Он может использоваться в качестве основного источника энергии в период непродолжительных приездов семьи на дачу, на которой не предусмотрено подведение стационарной линии питания.

Часто мини-электростанция становится незаменимой при ведении строительства

Это – отличное решение по организации электропитания для инструментов и для освещения при проведении строительных и, иногда, сельскохозяйственных работ, в мастерских, гаражах и т.д., в случаях, когда нет возможности использовать сетевую электроэнергию.

Компактный генератор позволяет организовать полноценный комфортабельный отдых на природе

Мобильная бензиновая электростанция поможет создать максимальный комфорт в походных условиях, обеспечивая питанием осветительные приборы, мультимедийные устройства, мини–холодильник, электроплитку или чайник и т.п.

Потенциальный владелец, намереваясь приобретать бензиновую электростанцию, должен чётко представлять, в какой роли он собирается ее использовать. От этого напрямую зависят многие критерии оценки и выбора необходимой модели.

Электростанции для дома: топливные варианты

У всех электростанций данного типа имеется один существенный недостаток – они сжигают топливо, что делает их использование неоправданно дорогим. По сути, такая электроэнергия обойдется в разы дороже, чем сетевое электричество, поставляемое энергетическими компаниями. В общем, как резервный вариант они себя показывают нормально, но вот на постоянной основе использовать их будет не слишком рентабельно. К таким электростанциям, сжигающим топливо, можно отнести массу различных вариантов, но наиболее распространенными среди всего имеющегося ассортимента являются следующие варианты.

Электростанция бензиновая для дома. Скажем так – вариант не очень экономичный, но, тем не менее, является одним из самых распространенных. Причина простая – это хороший вариант для резервного энергоснабжения дома, который показал свои преимущества при непродолжительной работе. Мало того, в большинстве случаев это довольно компактные и не очень шумные электростанции, способные работать в широком диапазоне температур. Недостаток, кроме указанного выше, характерного для всех типов подобных генераторов электроэнергии – необходимость запаса топлива. По сути, если речь идет о снабжении электричеством дома, находящегося вдали от крупных населенных пунктов, понадобится соорудить свою собственную миниатюрную бензозаправочную станцию – как минимум хранилище запасов топлива.

Дизельная электростанция для дома. Этот вариант домашних электростанций считается более экономичным – мало того, что само топливо обходится немного дешевле, так еще и сами двигатели, вращающие генераторы, потребляют его немного меньше. Как правило, дизельный двигатель отличается большей мощностью, что позволяет вращать с его помощью более мощные генераторы. В общем, если говорить о больших нагрузках и постоянном снабжении дома электричеством, то этот вариант более подходящий, чем предыдущий. Из недостатков можно отметить все ту же необходимость в запасе топлива – в принципе, этот минус касается всех топливосжигающих электростанций для дома

Неважно, что приводит во вращение генератор – будь это бензин или дрова, все равно без запаса топлива обойтись не получится.

Газовая электростанция для дома. Газ – это вообще самое дешевое топливо, если, конечно, не считать такого бросового материала, как дрова, собрать которые можно в любой посадке или близлежащем лесу

Здесь дело в другом – если в дом не проведен газ, то, опять-таки, появляется необходимость приобретать его в мобильной таре. То есть устанавливать баллоны и емкости, что не очень безопасно, хотя, в принципе, такое хранилище можно построить и в отдалении от дома. Мало того, это дополнительные затраты на газобаллонное оборудование и транспортировку топлива издалека – именно эти два момента и делают автономную газовую электростанцию оптимальным решением для тех домов, к которым подведен магистральный газопровод.

А вообще, если подводить итоги всему написанному выше, можно сделать только один вывод – ни одна топливная автономная электростанция для загородного дома не оправдывает свою установку. Попросту говоря, они нерентабельны, и в этом не сложно убедиться, проведя элементарные расчеты – учитывая все расходы, связанные с ее приобретением, установкой и эксплуатации, получается так, что они вообще не окупаются. Так что если поблизости имеется ЛЭП, то лучше использовать сетевое электричество, а электростанции индивидуального использования оставить на безысходные случаи и резервное энергоснабжение дома.

Экономные солнечные генераторы: принцип работы

Для труднодоступных районов с перебойным обеспечением электроэнергией солнечные генераторы становятся спасением комфортного проживания. С помощью него можно решить проблемы энергоресурсов и обеспечить автономное энергообеспечение. В основном бытовые генераторы рассчитаны на 220 В. Устройства оснащены дисплеем, который отображает сообщение о работе батарей. Устанавливаются приборы на участках с большим поступлением солнечных лучей: крыша дома, стены здания, открытая местность.

Такой прибор сможет обеспечить работу бытового оборудования: холодильника, стиральной машины, зарядки компьютерных систем, работы отопительных приборов, электроинструментов и циркулярных насосов. Бесперебойная работа гарантирована на 10 – 12 часов.

Достоинства системы заключаются:

  • В автономности;
  • Не зависимости от центрального снабжения;
  • Мобильности;
  • Бесшумной работе;
  • Экологической безопасности;
  • Длительном сроке эксплуатации;
  • Компактности;
  • Возможности работать на непроветриваемых участках.

Единственным минусом является стоимость устройства, которая в последствии окупает затраты на электроэнергию.

Самостоятельное изготовление солнечных панелей

Солнечные установки – альтернатива традиционному электричеству, которая в готовом виде стоит дорого. При собственноручной сборке можно снизить себестоимость конструкции в 3-4 раза. Перед началом создания солнечной панели нужно понять принцип ее функционала.

Как работает система солнечного электроснабжения

Для представления принципа работы стоит начать с конструкции. Устройство солнечных энергоисточников включает:

  • солнечную панель – комплекс узлов преобразования солнечного света в электронный поток;
  • АКБ – в системе их несколько, количество зависит от мощности потребителей;
  • контроллер заряда – обеспечивает нормальную зарядку АКБ без перезарядки;
  • инвертор – трансформирует ток низкого напряжения с батарей в ток высокого напряжения (для дома хватит 3-5 кВт).

Солнечные батареи по отдельности производят токи с низким напряжением (около 18-21 В), чего хватает для зарядки аккумулятора на 12 вольт.

Создание солнечной батареи

Материалы для изготовления солнечной панели

Сборка батареи производится из модульных фотоэлементов. В одном бытовом модуле находится 30, 36 и 72 элемента. Они соединяются последовательно с источником питания, максимальное напряжение которого – 50 В.

Для корпусной части понадобятся деревянные брусья, ДВП, оргстекло и фанера. Дно бокса вырезается из фанеры и вставляется в рамку из брусков 25 мм в толщину. По периметру рамы проделываются отверстия. Для предотвращения перегрева элементов шаг сверления должен составлять 15-20 см.

Сборка солнечной панели

Из ДВП канцелярским ножом вырезается подложка из ДВП с вентиляционными отверстиями. Их изготавливают по квадратно-гнездовой схеме с отступом на 5 см. Затем:

  1. Элементы укладываются верхней частью на подложку и распаиваются.
  2. Соединения производятся последовательно, порядово.
  3. Готовые ряды присоединяют на шины, проводящие ток.
  4. Элементы переворачивают и крепят в посадочном месте силиконом.
  5. Проверяют параметры напряжения на выходе. Его диапазон составляет от 18 до 20 В.
  6. 2-3 дня производят обкатку батареи для тестирования заряжающей способности.
  7. По окончании проверки стыки герметизируют.

Подготовка панели к монтажу

Покрасьте и просушите подложку 2 раза.

После проверки функционирования собирают солнечную панель:

  1. Выводят контакты входа и выхода наружу.
  2. Вырезают крышку из оргстекла и фиксируют ее саморезами на заранее проделанные отверстия.
  3. При использовании диодной цепи из 36 диодов с напряжением 12 В с детали снимают краску ацетоном.
  4. В пластиковой панели проделываются отверстия, вставляют и распаиваются диоды.

На последнем этапе выполняется монтаж и ориентирование солнечной панели для облегчения доступа обслуживания и эффективности получения энергии.

Правила монтажа солнечной панели

Подключение солнечной батареи

Промышленные модификации могут вращаться самостоятельно. Бытовые устройства необходимо выставлять по нескольким параметрам:

  • Удаление от затененных участков – дерево или высокий дом рядом сделают работу прибора неэффективной.
  • Ориентир на солнечную сторону. Жители северного полушария ориентируют конструкцию на юг, южного – на север.
  • Угол наклона – привязывается к географической широте участка. Летом солнечную панель лучше наклонять на 30 градусов к линии горизонта, зимой – на 70 градусов.
  • Наличие доступа для обслуживания – уборки пыли, грязи, налипшего снега.

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Руландия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: