Дом, питаемый ветрами

Ветрогенераторы своими руками на 220 в

Для того, чтобы собрать ветроуловитель нам понадобятся: генератор на 12 вольт, аккумуляторные батареи, преобразователь с 12 v на 220 в, вольтметр, медные провода, крепежи (хомуты, болты, гайки).

Изготовление любого ветряка предполагает наличие таких этапов как:

  1. Изготовление лопастей. Лопасти вертикального ветрогенератора можно сделать из бочки. Нарезать детали можно при помощи болгарки. Винт для небольшого ветряка можно изготовить из трубы ПВХ с сечением в 160 мм.
  2. Изготовление мачты. Мачта должна быть высотой не менее 6 метров. При этом, для того, чтобы крутящее усилие не сорвало мачту, ее необходимо закрепить ее на 4 растяжки. Каждую растяжку, при этом, нужно намотать на бревно, которое следует закопать глубоко в землю.
  3. Установка неодимовых магнитов. Магниты наклеиваются на диск ротора. Лучше выбирать прямоугольные магниты, магнитные поля в которых сосредотачиваются по всей поверхности.
  4. Намотка катушек генератора. Намотка выполняется медной нитью с диаметром не менее двух мм. При этом, мотков должно быть не более 1200.
  5. Фиксация лопастей к трубе при помощи гаек.

При наличии мощных аккумуляторных батарей и инвертора, полученное устройство сможет выработать такое количество электричества, которого будет достаточно для использования бытовой техники (например, холодильника и телевизора). Отлично подойдет такой генератор для поддержания работы систем освещения, отопления и вентиляции небольшого дачного домика, теплицы.

Общие рекомендации

Очевидно, что для выбора наиболее оптимального диаметра винта ветрогенератора необходимо знать среднюю скорость ветра на месте планируемой установки. Количество электроэнергии, произведенной ветряком возрастает в кубическом соотношении с повышением скорости ветра. Например, если скорость ветра увеличится в 2 раза, то кинетическая энергия, выработанная ротором, увеличится в 8 раз. Поэтому можно сделать вывод, что скорость ветра является самым важным фактором, влияющим на мощность установки в целом.

Для выбора места установки ветрогенерирующей электроустановки наиболее подойдут участки с минимальным количеством преград для ветра (без больших деревьев и построек) на расстоянии от жилого дома не менее 25-30 метров (не забывайте, что ветрогенераторы весьма громко гудят во время работы). Высота расположения центра ротора ветряка должна быть не менее чем на 3-5 метров выше ближайших построек. На линии ветреного прохода деревьев и построек быть не должно. Для расположения ветрогенератора наиболее подойдут вершины холмов или горные хребты с открытым ландшафтом.

В случае, если ваш загородный дом не планируется подключать к общей сети, то следует рассмотреть вариант комбинированных систем:

  • ВЭС + Солнечные батареи
  • ВЭС + Дизель

Комбинированные варианты помогут решить проблемы в регионах, где ветер переменчивый или зависит от времени года, а также данный вариант является актуальным для солнечных батарей.

Расчёт инвертора под домашний ветряк

Сразу следует оговориться: если конструкция домашней энергетической ветроустановки содержит один аккумулятор на 12 вольт, смысл ставить инвертор на такую систему полностью исключается.

В среднем потребляемая мощность бытового хозяйства составляет не менее 4 кВт на пиковых нагрузках. Отсюда вывод: количество аккумуляторных батарей для такой мощности должно составлять не менее 10 штук и желательно под напряжение 24 вольта. На такое количество АКБ уже есть смысл устанавливать инвертор.


Инвертор небольшой мощности (600 Вт), который может быть использован для домашней малой энергетической установки. Запитать от такой техники напряжением 220 вольт можно телевизор или небольшой холодильник. На лампы в люстре тока уже не хватит

Однако чтобы обеспечить полностью энергией 10 аккумуляторов с напряжением по 24 Вт на каждый и стабильно поддерживать их заряд, потребуется ветряк мощностью не менее 2-3 кВт. Очевидно, для бытовых простеньких конструкций такую мощность не потянуть.

Тем не менее, рассчитать мощность инвертора можно следующим образом:

  1. Суммировать мощность всех потребителей.
  2. Определить время потребления.
  3. Определить пиковую нагрузку.

На конкретном примере это будет выглядеть так.

Пусть в качестве нагрузки есть бытовые электроприборы: лампы освещения – 3 шт. по 40 Вт, телевизионный приёмник – 120 Вт, компактный холодильник 200 Вт. Суммируем мощность: 3*40+120+200 и получаем на выходе 440 Вт.

Определим мощность потребителей для среднего периода времени в 4 часа: 440*4=1760 Вт. Исходя из полученного значения мощности по времени потребления, логичным видится подбор инвертора из числа таких приборов с выходной мощностью от 2 кВт.

Опираясь на это значение, рассчитывается вольт-амперная характеристика требуемого прибора: 2000*0,6=1200 В/А.


Классическая схема воспроизводства и распределения энергии, полученной от ветряного генератора бытового типа. Однако чтобы обеспечить долговременной энергией такое количество приборов, нужна достаточно мощная установка (+)

Реально нагрузка от домашнего хозяйства на семью в три человека, где имеется полноценное оснащение бытовой техникой, будет выше рассчитанной в примере. Обычно и по времени подключения нагрузки параметр превышает взятые 4 часа. Соответственно, инвертор ветряной энергосистемы потребуется более мощный.

Как вырезать лопасти

Далее по линии начиняя с корня лопасти отмечаете размеры радиуса лопасти — в столбце «Радиус лопасти» в зеленых колонках. По этим размерам на линии ставите точки в лево и в право от корня лопасти. Влево если смотреть от корня лопасти к кончику будут координаты лекала Тыл мм, а справа от линии координаты лекала Фронт мм. После соединяете точки и у вас образуется лопасть, которую обычно вырезают с помощью полотна от ножовки по металлу, или электролобзиком.

Отверстия для крепления лопасти на хаб делаются строго по центральной линии лопасти, которую чертили на трубе в самом начале, если сместить отверстия, то лопасть встанет под другим углом к ветру и потеряет все свои качества. Кромки лопасти нужно обязательно обработать, фронтальную часть лопасти закруглить, тыльную часть заострить’ и закруглить кончики лопастей чтобы ничего не свистело и не шумело. Таблица эксель уже учитывает при расчете обработку кромок таким образом как на картинке ниже.
>

Надеюсь вам стало понятнее как пользоваться табличкой и как подбирать винт под генератор. Для примера я конечно выбрал генератор с неподходящими параметрами так-как слишком рано начинается зарядка 12в АКБ, для 24в и 48 вольт результаты были бы другие и мощность еще выше, но все примеры не опишешь.

Самое главное понять принципы, например подбирая винт если он имеет хорошую мощность при одних оборотах, это не значит что он будет ее иметь на практике, если генератор слишком рано нагрузит винт, то он не выйдет на свои обороты и не разовьет ту мощность, которая должна быть при меньших оборотах, хоть и ветер будет расчетный или даже выше. Лопасти настроены на определенную быстроходность и будут брать максимум мощности от ветра при своей быстроходности.

Какие конструкции имеют наивысший КПД?

На сегодня наивысший КПД горизонтальных ветровых установок, обладающих большей эффективностью, чем вертикальные ветряки, равен 0,4. Для вертикальных устройств среднее значение считается равным 0,38, т.е. показатели близки и не находятся на большом удалении друг от друга. Периодически появляются сообщения о разработках устройств, КПД которых превышает существующие показатели в 2 или более раз, что весьма сомнительно и не подтверждается более ничем, кроме голословных утверждений журналистов, плохо представляющих себе предмет.

Тем не менее, устройства с заметно возросшей эффективностью существуют. Они созданы в разных конструкционных вариантах, есть горизонтальные или вертикальные установки с повышенной производительностью, мощностью, остальными параметрами. Большинство таких устройств являются маломощными комплексами, предназначенными для использования в отдаленных районах и обеспечивающие отдельные дома или участки.

Известны конструкции изобретателей Онипко, Третьякова и многих других конструкторов, имеющие оригинальные и элегантные варианты увеличения производительности и, соответственно, КПД. Большинство из них пока еще находятся в стадии разработки или подготовки к массовому производству, так как активная работа в этом направлении начата относительно недавно, еще не успела полностью реализоваться в виде промышленных изделий.

Ветровая нагрузка как образуется

Так, по мере своего передвижения, воздушный поток двигается. На своем пути он сталкивается с различными преградами, в частности, кровля, стены и другие конструкции дома. Как только воздушный поток сталкивается с подобными сооружениями, он раздваивается. Например, когда воздушная масса сталкивается со стеной, то часть нагрузки идет на низ здания, а вторая часть на карнизный свес кровли.

Когда воздушный поток сталкивается со скатом кровли, то происходит огибание ветра по касательной конек крыши. После этого поток подхватывает спокойные молекулы воздуха с подветренной стороны и уносит в сторону от здания. Таким образом, кровля сталкивается с нагрузкой четырех сил, которые способны сорвать ее или перевернуть:

Основные показатели

Производительность — это совокупность трёх важных параметров:

  1. Выработки или объёма (количества) готовой продукции, выпущенной за единицу оплачиваемого времени (например, за час) одним работником. Для определения этого показателя количество продукции делится на потраченное время. Либо количество продукции делится на средний показатель численности персонала (согласно спискам).
  2. Трудоёмкости или показателя (объёма) затраченного труда на одну единицу продукции. Для определения показателя затраченное время делят на объём произведённой продукции (исчисленный в единицах или штуках). Либо средние показатели численности работников делят на объём продукции, выраженный в натуральных единицах.
  3. Индекса производительности, который определяется через более подробный расчёт.

Теория идеального ветряка

Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком.

Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора – Сабинина Г.Х. уточненное значение коэффициента составило 0,687.

В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами:

  • Ось вращения колеса должна быть параллельна со скоростью ветрового потока.
  • Количество лопастей бесконечно большое, с очень малой шириной.
  • Нулевое значение профильного сопротивления крыльев при наличии постоянной циркуляции вдоль лопастей.
  • Вся сметаемая поверхность ветряка обладает постоянной потерянной скоростью воздушного потока на колесе.
  • Стремление угловой скорости к бесконечности.

Преимущества ветровых генераторов

Достоинства, характерные для такого оборудования:

  1. Небольшие начальные значения скорости ветрового потока для того, чтобы привести в движение роторный механизм установки. В некоторых современных моделях оборудования данный показатель составляет от 0,3 метров в секунду. Но по факту вертикальные ветрогенераторы начнут эффективно производить энергию при скорости около 3-5 м/сек. Показатель номинальной мощности оборудования будет в случае, когда скоростные значения составят 10-18 метров в секунду.
  2. Работа ветрового генератора не зависит от направления движения ветра. Благодаря особенностям конструкции установка может улавливать воздух независимо от угла.
  3. Вертикальные генераторные установки, как правило, характеризуются пониженным звуковым фоном. На практике этот параметр составляет не более 20 децибел. Также в работе устройств не проявляются частоты, близкие к нижнему порогу — инфразвук, негативно влияющий на здоровье. Поэтому установка оборудования возможна в непосредственной близости с жилыми домами.
  4. Во время функционирования ветрогенераторы практически не вырабатывают электромагнитное излучение. Работа конструкции не создает разрушительных вибраций.
  5. Оборудование неопасно для птиц, поскольку ими оно воспринимается как одно препятствие. Это весомое преимущество по сравнению с горизонтальными ветрогенераторами. Лопасти таких устройств птицы не ассоциируют с препятствиями, в результате сталкиваются с ними.
  6. Благодаря конструктивным особенностям вертикальное оборудование не нуждается в использовании дополнительных механизмов для осуществления запуска. Роторный узел начинает вращаться, как только ветровой поток достигнет минимального значения для старта установки.
  7. Работа ветрогенератора возможна в любых климатических условиях. Такое оборудование позволяет противостоять даже сильному ветру, вплоть до урагана.
  8. Простота использования и обслуживания агрегатов. Ветрогенераторы характеризуются упрощенной системой управления и минимальными расходами при эксплуатации, которые требуются для поддержания рабочего состояния. Благодаря этому оборудование все чаще используется в частных домах.

Пользователь Одесский инженер подробно рассказал о достоинствах и недостатках, характерных для генераторных установок.

Расчёт винтов ветряных установок

При конструировании ветряка обычно применяются два вида винтов:

  1. Вращение в горизонтальной плоскости (крыльчатые).
  2. Вращение в вертикальной плоскости (ротор Савониуса, ротор Дарье).

Конструкции винтов с вращением в любой из плоскостей можно рассчитать при помощи формулы:

Z= L*W/60/V

Для этой формулы: Z – степень быстроходности (тихоходности) винта; L – размер длины описываемой лопастями окружности; W – скорость (частота) вращения винта; V – скорость потока воздуха.

Такой выглядит конструкция винта под названием «Ротор Дарье». Этот вариант пропеллера считается эффективным при изготовлении ветрогенераторов небольшой мощности и размеров. Расчёт винта имеет некоторые особенности

Отталкиваясь от этой формулы, можно легко рассчитать число оборотов W – скорость вращения. А рабочее соотношение оборотов и скорости ветра можно найти в таблицах, которые доступны в сети. Например, для винта с двумя лопастями и Z=5, справедливо следующее соотношение:

Число лопастей Степень быстроходности Скорость ветра м/с
2 5 330

Также одним из важных показателей винта ветряка является шаг. Этот параметр можно определить, если воспользоваться формулой:

H=2πR* tg α

Здесь: 2π – константа (2*3.14); R – радиус, описываемый лопастью; tg α – угол сечения.

Конструкция и принцип работы ветрогенератора

Из названия ветрогенератора следует, что это оборудование приводится в движение ветром, но это далеко не все его особенности. Ветрогенераторная установка включает в себя несколько компонентов, перечисленных ниже:

  • Ротор с лопастями. Могут быть двух, трёх и многолопастные ветрогенераторы;
  • Редуктор. Он нужен для регулировки скорости вращения между генератором и ротором;
  • Корпус. Служит защитой всех частей установки от воздействия окружающей среды;
  • Механизм, регулирующий поворот конструкции по ветру;
  • Аккумуляторы. Основная цель – это накопление электрической энергии. Ведь ветер дует непостоянно и генерируемую с его помощью нужно где-то сохранять;
  • Инвертор. Используется для преобразования постоянного тока, который выдаёт ветрогенератор, в переменный, потребляемый бытовыми электроприборами.

Генератор может напрямую соединяться с ротором или между ними устанавливается редуктор, который повышает обороты генератора. Если ветрогенераторы крупные, работающие в местности с мощным потоком ветра, то в них может использоваться система регулировки положения лопастей для стабилизации оборотов генератора. В этом случае, при усилении ветра лопасти направляются в одну сторону. Это наращивает угол атаки ветряного потока, и ротор не ускоряет вращение. При ослабевании ветра лопасти, наоборот, поворачиваются так, чтобы ротор не снижал скорость. Обороты также могут быть отрегулированы нагрузкой на генератор или системой торможения. Цель этих регулировок в том, чтобы генератор функционировал на стабильных оборотах. Тогда он будет выдавать стабильное напряжение и тока со стабильной частотой. К примеру, 48 вольт 50 Гц.

Конструкция ветрогенератора

Принцип работы ветрогенератора несложный. Лопасти вращаются под действием ветра и вращают ротор. Затем в генераторе механическая энергия превращается в электрическую. Генератор вырабатывает трёхфазный ток. От него приборы работать не смогут, а значит, его нужно преобразовывать. Ток проходит через контроллер и заряжает аккумуляторы. От них ток идёт на инвертор, преобразующий его работы бытовых электроприборов. Ток становится переменным однофазным (напряжение 220 вольт, частота 50 Гц).

Зарядку аккумуляторов регулирует контроллер. Он вовремя отключает заряд аккумуляторов, чтобы их не испортить. Это может делаться сбросом энергии на балласт или торможением обмотки генератора. В любом случае электроэнергию напрямую от генератора использовать нельзя. Она должна проходить через аккумуляторы и инвертор. На аккумуляторах обычно напряжение 12, 24 или 48 вольт. В стандартные 220 вольт их превращает инвертор. Кроме того, он преобразует напряжение из постоянного в переменное.

Если все потребители тока требуют низкое постоянное напряжение, то можно обойтись и без инвертора. К примеру, можно напрямую к аккумуляторам подключать электрические приборы номиналом 12 вольт.

[su_youtube url=»https://www.youtube.com/embed/yXOVJYvH8j4″]

Простая и сложная формулы

Существует две формулы, по которым вы можете определить мощность ветрогенератора, зная скорость ветра и радиус либо диаметр лопастей.

Первая формула немного сложнее, и реже используется.

Мощность = коэффициент использования энергии ветра * ((плотность возд. потока * скорость ветра в кубе)/2 * п * радиус в квадрате)

Вторая формула несколько упрощена.

Мощность = 0,6 * п * радиус в квадрате * скорость ветра в кубе

Скорость ветра для расчёта стоит брать ниже среднегодовой, чтобы реально понимать, на какие цифры вам стоит рассчитывать.

Сопротивление фазы

Теперь у нас есть напряжение на заданных оборотах, чтобы вычислить мощность генератора нам нужно высчитать сопротивление обмотки генератора. Это делается по формуле R= pL/S,

Переменные значения формулы R= p*L:S,

p — удельное сопротивление, в данном случае удельное сопротивление меди 0,0175Омм2/м

L — длинна провода

S — площадь сечения провода мм2.

Теперь попробуем посчитать, и так у нас 9 катушек по 100 витков проводом 1 мм, в общем получается 900витков, значит количество витков в фазе 300. Теперь нужно найти длину этих 300 витков.

Если не знаем длину провода, то будем считать примерно, и так катушки по высоте у нас к примеру 68мм треугольной формы, а ширина в верхней части 45 мм, в нижней 30мм, ширина витков 14мм, значит можно взять среднюю длину одного витка. Расчет такой 68-7+68-7+30-7+45-7= 181мм, получается средняя длинна витка в катушке 181*300 и получается 54 метра провода в фазе, 7 мм это ширина витков в катушке поделенная на 2.

Теперь удельное сопротивление меди по формуле выше умножаем на длину провода и делим на площадь сечение проводника, площадь сечения определяется так, S=pd2,

переменные формулы S=pd2

р — равно 3,14

d- диаметр провода мм

У нас провод диаметром 1 мм, площадь его сечения получается 3,14*1*1=0,785мм2., округлим до 0,8 мм2.

Теперь несколько моментов о правильности сборки аксиального генератора

Диски под магниты должны быть равны толщине магнитов, можно толще, но тоньше нет, так-как магнитное поле магнитов замыкается через железо подпитывая магниты, тем самым усиливая передачу магнитного потока к магнитам стоящим на дисках напротив друг друга. Если сделать диски тоньше, то часть магнитного потока будет рассеиваться. Если к обратной стороне диска ничего не магнитится, можно проверить иголкой, то значит все хорошо.

Расстояние на дисках между магнитами должно быть равно половине ширины магнита, можно больше, но если меньше, то часть магнитного поля будет замыкаться на соседние магниты и не пойдет к противоположным магнитам через катушки.

Толщина статора с катушками должна быть не толще магнитов, если толще то из-за большого расстояния между магнитами магнитное поле сильно рассеивается и не все идет к магнитам, которые на дисках на против друг друга. Магниты нужно на дисках наклеивать с чередованием полюсов, а диски должны притягиваться, то-есть магниты стоящие друг на против друга должны притягиваться.

Для однофазного генератора количество катушек должно быть равно количеству магнитных полюсов ротора, то-есть если у вас по 12 магнитов на каждом диске, то и катушек должно быть 12. Катушки соединяются последовательно, конец первой с концом второй,а начало второй с началом третьей, конец третьей с концом четвертой и так далее. Но однофазный генератор я не рекомендую вам делать, во-первых вибрация под нагрузкой, которая предается по мачте и слышно гудение при работе особенно на сильном ветре, и другие неприятные мелочи, о которых долго рассказывать.

Трехфазный генератор делают с соотношением 2/3 или 4/3 где число магнитов/число катушек. К примеру если делать 12 полюсов ( магнитов на дисках), то можно делать как 9 катушек, по три на фазу, так и 18 катушек по 6 на фазу. Катушки фаз соединяются последовательно, или если 20 полюсов, то 15 катушек, по 5 на фазу.

К примеру если у вас 9 катушек, первая фаза начинается с первой катушки, которая соединяется с четвертой, а четвертая с седьмой, и два провода выводятся наружу, это начало первой и конец седьмой катушки_1_4_7_. Вторая фаза так-же, но начинается со второй катушки_2_5_8_, а третья _3_6_9_ катушки. Все шесть выводов желательно вывести наружу чтобы потом соединять звездой или треугольником.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Руландия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: