Гидравлический расчет однотрубной и двухтрубной системы отопления с формулами, таблицами и примерами

Расход теплоносителя в системе отопления

Расход в системе теплоносителя подразумевает массовое количество теплоносителя (кг/с), предназначаемое для подачи нужного количества тепла в обогреваемое помещение. Расчет теплоносителя в отопительной системе определяется как частное от деления расчетной тепловой потребности (Вт) помещения (помещений) на теплоотдачу 1 кг теплоносителя для обогрева (Дж/кг).

Некоторые советы по наполнению системы отопления теплоносителем на видео:

Расход теплоносителя в системе в продолжение отопительного сезона в вертикальных системах центрального отопления изменяется, поскольку они регулируются (особенно это касается гравитационной циркуляции теплоносителя — детальнее: «Расчет гравитационной системы отопления частного дома — схема «). На практике в расчетах обычно расход теплоносителя измеряют в кг/ч.

Порядок расчета гидравлических параметров отопления


Отопление на плане дома

На первом этапе вычисления параметров системы отопления следует составить предварительную схему, на которой указывается расположение всех компонентов. Таким образом определяется общая протяженность магистралей, рассчитывается количество радиаторов, объем воды, а также характеристики отопительных приборов.

Как сделать гидравлический расчет отопления, не имея опыта подобных вычислений? Следует помнить, что для автономного теплоснабжения важно правильно подобрать диаметр труб. Именно с выполнения этого этапа и следует начать вычисления

Определение оптимального диаметра труб


Виды труб для отопления

Самый упрощенный гидравлический расчет системы отопления включает в себя только вычисление сечения трубопроводов. Нередко при проектировании небольших систем обходятся и без него. Для этого берут следующие параметры диаметров труб в зависимости от типа теплоснабжения:

  • Открытая схема с гравитационной циркуляцией. Трубы диаметром от 30 до 40 мм. Такое большего сечение необходимо для уменьшения потерь при трении воды о внутреннюю поверхность магистралей;
  • Закрытая система с принудительной циркуляцией. Сечение трубопроводов варьируется от 8 до 24 мм. Чем оно меньше, тем больше давление будет в системе и соответственно – уменьшится общий объем теплоносителя. Но при этом возрастут гидравлические потери.

Если в наличии есть специализированная программа для гидравлического расчета системы отопления – достаточно заполнить данные о технических характеристиках котла и перенести отопительную схему. Программный комплект определит оптимальный диаметр труб.


Таблица выбора внутреннего диаметра трубопроводов

Полученные данные можно проверить самостоятельно. Порядок выполнения гидравлического расчета двухтрубной системы отопления вручную при вычислении диаметра трубопроводов заключается в вычислении следующих параметров:

  • V – скорость движения воды. Она должна быть в пределах от 0,3- до 0,6 м/с. Определятся производительностью насосного оборудования;
  • Q – тепловой поток. Это отношение количества тепла, проходящего за определенный промежуток времени – 1 секунду;
  • G – расход воды. Измеряется в кг/час. Напрямую зависит от диаметра трубопровода.

В дальнейшем для выполнения гидравлического расчета систем водяного отопления понадобиться узнать общий объем отапливаемого помещения – м³. Предположим, что это значение для одной комнаты равно 50 м³. Зная мощность котла отопления (24 кВт) вычисляем итоговый тепловой поток:

Q=50/24=2,083 кВт


таблица расхода воды в зависимости от диаметра трубы

Затем для выбора оптимального диаметра труб нужно воспользоваться данными таблицы, составленными при выполнении гидравлического расчета системы отопления в Excel.

В этом случае оптимальный внутренний диаметр трубы на конкретном участке системы составит 10 мм.

В дальнейшем для выполнения примера гидравлического расчета системы отопления можно узнать ориентировочный расход воды, который засвистит от диаметра трубы.

Учет местных сопротивлений в магистрали


Пример гидравлического расчета отопления

Не менее важным этапом является расчет гидравлического сопротивления отопительной системы на каждом участке магистрали. Для этого вся схема теплоснабжения условно разделяется на несколько зон. Лучше всего сделать вычисления для каждой комнаты в доме.

В качестве исходных данных для внесения в программу для гидравлического расчета системы отопления понадобятся следующие величины:

  • Протяженность трубы на участке, м.п;
  • Диаметр магистрали. Порядок вычислений описан выше;
  • Требуемая скорость теплоносителя. Также зависит от диаметра трубы и мощности циркуляционного насоса;
  • Справочные данные, характерные для каждого типа материала изготовления – коэффициент трения (λ), потери на трении (ΔР);
  • Плотность воды при температуре +80°С составит 971,8 кг/м³.

Зная эти данные можно сделать упрощенный гидравлический расчет отопительной системы. Результат подобных вычислений можно увидеть в таблице. При проведении этой работы нужно помнить, что чем меньше выбранный участок отопления, тем точнее будут данные общих параметров системы. Так как сделать гидравлический расчет теплоснабжения с первого раза будет затруднительно – рекомендуется провести ряд вычислений для определенного промежутка трубопровода. Желательно, чтобы в нем было как можно меньше дополнительных приборов – радиаторов, запорной арматуры и т.д.

Что нам дает гидравлический расчет?

  1. Потери носителя тепла и давления в самой системе.
  2. Необходимый диаметр труб на самых ответственных участках магистрали. В этом случае необходимо учесть то, каковыми являются требуемые и материально целесообразные скорости перемещения теплоносителя.
  3. Гидроувязка всех ветвей отопительной системы. При этом для того, чтобы сбалансировать систему в различных режимах функционирования, необходимо использовать упомянутую ранее арматуру регулировки.
  4. Утеря давления на прочих отрезках магистрали.

Важная информация! Во время проектирования и установки обогревательной системы самым трудоемким и ответственным этапом работы считается именно гидравлический расчет.

Но до того как произвести гидравлический расчет системы отопления, нужно предварительно выполнить целый ряд процедур.

Расчет системы воздушного отопления — простая методика

Проектирование воздушного отопления не простая задача. Для ее решения необходимо выяснить ряд факторов, самостоятельное определение которых может быть затруднено. Специалисты компании РСВ могут бесплатно сделать для вас предварительный проект по воздушному отоплению помещения на основе оборудования ГРЕЕРС.

Система воздушного отопления, как и любая другая, не может быть создана наобум. Для обеспечения медицинской нормы температуры и свежего воздуха в помещении потребуется комплект оборудования, выбор которого основывается на точном расчете. Существует несколько методик расчета воздушного отопления, разной степени сложности и точности. Обычная проблема расчетов такого типа состоит в отсутствии учета влияния тонких эффектов, предусмотреть которые не всегда имеется возможность

Поэтому производить самостоятельный расчет, не будучи специалистом в сфере отопления и вентиляции, чревато появлением ошибок или просчетов. Тем не менее, можно выбрать наиболее доступный способ, основанный на выборе мощности системы обогрева.

Формула определения теплопотерь:

Q=S*T/R

Где:

  • Q — величина теплопотерь (вт)
  • S — площадь всех конструкций здания (помещения)
  • T — разница внутренней и внешней температур
  • R — тепловое сопротивление ограждающих конструкций

Пример:

Здание площадью 800 м2 (20×40 м), высотой 5 м, имеется 10 окон размером 1,5×2 м. Находим площадь конструкций: 800 + 800 = 1600 м2 (площадь пола и потолка) 1,5 × 2 × 10 = 30 м2 (площадь окон) (20 + 40) × 2 × 5 = 600 м2 (площадь стен). Вычитаем отсюда площадь окон, получаем «чистую» площадь стен 570 м2

В таблицах СНиП находим тепловое сопротивление бетонных стен, перекрытия и пола и окон. Можно определить его самостоятельно по формуле:

Где:

  • R — тепловое сопротивление
  • D — толщина материала
  • K — коэффициент теплопроводности

Для простоты примем толщину стен и пола с потолком одинаковой, равной 20 см. Тогда тепловое сопротивление будет равно 0,2 м / 1,3= 0,15 (м2*К)/Вт Тепловое сопротивление окон выберем из таблиц: R = 0,4 (м2*К)/Вт Разницу температур примем за 20°С (20°С внутри и 0°С снаружи).

Тогда для стен получаем

  • 2150 м2 × 20°С / 0,15 = 286666=286 кВт
  • Для окон: 30 м2 × 20°С/ 0,4 = 1500=1,5 кВт.
  • Суммарные теплопотери: 286 + 1,5 = 297,5 кВт.

Такова величина теплопотерь, которые необходимо компенсировать при помощи воздушного отопления мощностью около 300 кВт

Примечательно, что при использовании утепления пола и стен теплопотери снижаются как минимум на порядок.

Расчет мощности системы отопления по объему жилья

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м2, комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м3.

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Теплая зима. Холода отсутствуют или очень слабы От 0,7 до 0,9 Краснодарский край, побережье Черного моря
Умеренная зима 1,2 Средняя полоса России, Северо-Запад
Суровая зима с достаточно сильными холодами 1,5 Сибирь
Экстремально холодная зима 2,0 Чукотка, Якутия, регионы Крайнего Севера

Расчет мощности системы отопления по объему жилья

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому

Калькулятор — расчет объема системы отопления

Перейти к расчётам
 

Укажите запрашиваемые данные и нажмите «РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

КОТЁЛ
Объем теплообменника котла , литров (паспортная величина)

РАСШИРИТЕЛЬНЫЙ БАК
Объем расширительного бака, литров

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

Разборные, секционные радиаторы
Тип радиатора:
– чугунные МС-140 с межосевым 500 мм
– чугунные МС-140 с межосевым 300 мм
– чугунные ЧМ-2 с межосевым 500 мм
– чугунные ЧМ-2 с межосевым 300 мм
– алюминиевые с межосевым 500 мм
– алюминиевые с межосевым 350 мм
– биметаллические с межосевым 500 мм
– биметаллические с межосевым 350 мм

Общее количество секций

Неразборные радиаторы и конвекторы
Объем прибора по паспорту

Количество приборов
Теплый пол

Тип и диаметр трубы

Общая длина контуров

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)
Стальные трубы ВГП

Ø ½ “, метров

Ø ¾ “, метров

Ø 1 “, метров

Ø 1¼ “, метров

Ø 1½ “, метров

Ø 2 “, метров

Армированные полипропиленовые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

Ø 50 мм, метров

Металлопластиковые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)
Наличие дополнительных приборов и устройств:
– нет
– есть

Суммарный объем дополнительных элементов системы

Расчет мощности отопительного котла

Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.

Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.

Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:

271,512 + 45,76 = 317,272 кВт·ч,

Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.

Соответственно, необходимая отопительная мощность котла будет:

317,272 : 24 (часа) = 13,22 кВт

Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.

Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.

Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:

13,22 · 0,2 + 13,22 = 15,86 кВт

Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:

493,82 : 30 : 24 = 0,68 кВт

По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.

Рекомендации при выборе и эксплуатации

Делая выбор теплоносителя для системы отопления, стоит знать, что не все отопительные системы способны работать с антифризом. Многие производители не допускают возможности его использования в виде теплоносителя, зачастую это служит поводом для отказа в гарантийном обслуживании оборудования.

Перед тем как заполнить систему отопления теплоносителем, нужно тщательно изучить его особенности, такие как:

  • состав, назначение и виды присадок;
  • температура замерзания;
  • длительность эксплуатации без замены;
  • взаимодействие антифриза с резиной, пластиком, металлом и т.д.;
  • безвредность для здоровья и экологическая безопасность (замена теплоносителя в системе потребует его слить).

Меньший, чем у воды, коэффициент поверхностного натяжения придает ему текучесть и позволяет с легкостью проникнуть в поры и микротрещины. Все соединения нужно уплотнить тефлоновыми, паронитовыми или из стойкой резины прокладками. Бессмысленно использовать в системе отопления элементы с цинковым покрытием. В результате химической реакции оно будет уничтожено за время первого отопительного сезона.

Расчет показывает, что из-за низкой теплоемкости антифриз медленнее накапливает и отдает теплоэнергию, поэтому необходимо использовать трубы с увеличенным диаметром и повысить количество секций радиаторов. Циркуляция теплоносителя в системе затрудняется повышенной вязкостью антифриза, что снижает КПД. Устраняется это путем замены насоса на более мощный.

Предварительный расчет поможет правильно спроектировать отопительный контур и позволит узнать необходимый объем теплоносителя в системе.

Недопустимо превышать температуру теплоносителя в системе отопления больше заявленной производителем. Даже кратковременно увеличенная температура теплоносителя ухудшает его параметры, приводит к распаду присадок и возникновению нерастворимых образований в виде осадка и кислот. При попадании на нагревательные элементы осадка возникает нагар. Кислоты, вступая в реакцию с металлами, способствуют образованию коррозии.

Срок эксплуатации антифриза зависит исключительно от выбранного режима и составляет 3-5 лет (до 10 сезонов). Перед его заменой необходимо промыть всю систему и котел водой.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

Ячейка Величина Значение, обозначение, единица выражения
D4 45,000 Расход воды G в т/час
D5 95,0 Температура на входе tвх в °C
D6 70,0 Температура на выходе tвых в °C
D7 100,0 Внутренний диаметр d, мм
D8 100,000 Длина, L в м
D9 1,000 Эквивалентная шероховатость труб ∆ в мм
D10 1,89 Сумма коэф. местных сопротивлений — Σ(ξ)
  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

Ячейка Алгоритм Формула Результат Значение результата
D12 !ERROR! D5 does not contain a number or expression tср=(tвх+tвых)/2 82,5 Средняя температура воды tср в °C
D13 !ERROR! D12 does not contain a number or expression n=0,0178/(1+0,0337*tср+0,000221*tср2) 0,003368 Кинематический коэф. вязкости воды — n, cм2/с при tср
D14 !ERROR! D12 does not contain a number or expression ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 0,970 Средняя плотность воды ρ,т/м3 при tср
D15 !ERROR! D4 does not contain a number or expression G’=G*1000/(ρ*60) 773,024 Расход воды G’, л/мин
D16 !ERROR! D4 does not contain a number or expression v=4*G:(ρ*π*(d:1000)2*3600) 1,640 Скорость воды v, м/с
D17 !ERROR! D16 does not contain a number or expression Re=v*d*10/n 487001,4 Число Рейнольдса Re
D18 !ERROR! Cell D17 does not exist λ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
0,035 Коэффициент гидравлического трения λ
D19 !ERROR! Cell D18 does not exist R=λ*v2*ρ*100/(2*9,81*d) 0,004645 Удельные потери давления на трение R, кг/(см2*м)
D20 !ERROR! Cell D19 does not exist dPтр=R*L 0,464485 Потери давления на трение dPтр, кг/см2
D21 !ERROR! Cell D20 does not exist dPтр=dPтр*9,81*10000 45565,9 и Па соответственно
D20
D22 !ERROR! D10 does not contain a number or expression dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) 0,025150 Потери давления в местных сопротивлениях dPмс в кг/см2
D23 !ERROR! Cell D22 does not exist dPтр=dPмс*9,81*10000 2467,2 и Па соответственно D22
D24 !ERROR! Cell D20 does not exist dP=dPтр+dPмс 0,489634 Расчетные потери давления dP, кг/см2
D25 !ERROR! Cell D24 does not exist dP=dP*9,81*10000 48033,1 и Па соответственно D24
D26 !ERROR! Cell D25 does not exist S=dP/G2 23,720 Характеристика сопротивления S, Па/(т/ч)2
  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Как рассчитать оптимальное количество и объемы теплообменников

При расчёте количества необходимых радиаторов, следует учитывать из какого материала они произведены. Рынок сейчас предлагает три вида металлических радиаторов:

  • Чугун,
  • Алюминий,
  • Биметаллический сплав.

Все они имеют свои особенности. Чугун и алюминий имеют одинаковый показатель теплоотдачи, но при этом алюминий быстро остывает, а чугун медленно нагревается, но долго сохраняет тепло. Биметаллические радиаторы быстро нагреваются, но остывают значительнее медленнее алюминиевых.

При расчете количества радиаторов также следует учитывать и другие нюансы:

  • теплоизоляция пола и стен помогает сохранить до 35% тепла,
  • угловая комната прохладнее других и требует большего количества радиаторов,
  • использование стеклопакетов на окнах сохраняет 15% теплоэнергии,
  • через крышу «уходит» до 25% теплоэнергии.

Количество радиаторов отопления и секций в них зависит от многих факторов

В соответствии с нормами СНиП, на обогрев 1 м3 требуется 100 Вт тепла. Следовательно, 50 м3 потребуют 5000 Вт. Если биметаллический прибор на 8 секций выделяет 120 Вт, то с помощью простого калькулятора считаем: 5000 : 120 = 41,6. После округления в большую сторону, получаем 42 радиатора.

Можно воспользоваться примерной формулой расчета секций радиатора:

N*= S/P *100

Значок (*) показывает, что дробная часть округляется по общим математическим правилам, N – количество секций, S – площадь комнаты в м2, а P – теплоотдача 1 секции в Вт.

Заключение

Отопление в доме

Итак, подведем итог. Как видите, чтобы сделать гидравлический анализ отопительной системы дома, необходимо учесть многое. Пример специально был простым, поскольку разобраться, скажем, с двухтрубной системой отопления дома в три или более этажей очень сложно. Для проведения такого анализа придется обратиться в специализированное бюро, где профессионалы разберут весь «по косточкам».

Необходимо будет учесть не только вышеописанные показатели. Сюда придется включить потерю давления, снижение температуры, мощность циркуляционного насоса, режим работы системы и так далее. Показателей много, но все они присутствуют в ГОСТах, и специалист быстро разберется, что к чему.

Единственное, что необходимо предоставить для расчета — это мощность отопительного котла, диаметр труб, наличие и количество запорной арматуры и мощность насоса.

Для того, чтобы система водяного отопления правильно фунциклировала необходимо обеспечить нужную скорость теплоносителя в системе. Если скорость будет маленькая, обогрев помещения будет очень медленный и дальние радиаторы будут значительно холоднее ближних. Наоборот, если же скорость теплоносителя будет слишком большой, то сам теплоноситель не будет успевать нагреваться в котле, температура всей системы отопления будет ниже. Добавится и уровень шума. Как видим скорость теплоносителя в системе отопления – очень важный параметр. Разберёмся же подробнее – какая должна быть самая оптимальная скорость.

Системы отопления где происходит естественная циркуляция, как правило, имеют сравнительно низкую скорость теплоносителя. Перепад давления в трубах достигается правильным расположением котла, расширительного бачка и самих труб – прямых и обратки. Только правильный расчёт перед монтажом, позволяет добиться правильного, равномерного движения теплоносителя. Но всё равно инерционность отопительных систем с естественной циркуляцией жидкости очень большая. Результат – медленный прогрев помещений, маленький КПД. Главный плюс такой системы – это максимальная независимость от электроэнергии, нет электрических насосов.

Чаще всего в домах используется система отопления с принудительной циркуляцией теплоносителя. Основным элементом такой системы является циркуляционный насос. Именно он ускоряет движение теплоносителя, от его характеристик зависит скорость жидкости в системе отопления.

Что влияет на скорость теплоносителя в системе отопления:

Схема системы отопления, — вид теплоносителя, — мощность, производительность циркуляционного насоса, — из каких материалов изготовлены трубы и их диаметр, — отсутствие воздушных пробок и засоров в трубах и радиаторах.

Для частного дома наиболее оптимальным будет скорость теплоносителя в пределах 0,5 – 1,5 м/с. Для административно-бытовых зданиях – не более 2 м/с. Для производственных помещений – не более 3 м/с. Верхний предел скорости теплоносителя выбирается, в основном, из-за уровня шума в трубах.

Многие циркуляционные насосы имеют регулятор скорости потока жидкости, так что возможно подобрать наиболее оптимальную именно для вашей системы. Правильно нужно выбирать и сам насос. Не надо брать с большим запасом мощности, так как будет большее потребление электроэнергии. При большой протяжённости системы отопления, большом количестве контуров, этажности и так далее лучше устанавливать несколько насосов меньшей производительности. Например, отдельно поставить насос на тёплый пол, на второй этаж.

Скорость воды в системе отопления Скорость воды в системе отопления Для того, чтобы система водяного отопления правильно фунциклировала необходимо обеспечить нужную скорость теплоносителя в системе. Если скорость будет маленькая,

Итоги

Таким образом, выполнив расчет расхода воды на отопление, можно узнать, какой мощности насос следует приобретать в конкретном случае. Переплачивать не имеет смысла, это не экономно и не повлияет на тепловые характеристики системы обогрева. Если циркуляционный насос рассчитать не правильно, то он не потянет нужный объём теплоносителя, более того — быстро выйдет из строя.

В среднем мощность, которой обладают циркуляционные насосы, составляет 10 куб. м/ч. В этом значении заложен запас мощности, поэтому температуру в помещении можно увеличивать без опасения, что насос выйдет из строя. На необходимость изменения температуры жилища могут влиять непредвиденные ситуации, например, аномальные морозы.

Правильно сбалансированная отопительная система, которая работает по принципу принудительной циркуляции, покажет высокий КПД. Это окупит монтаж насоса и затраченное электричество.

Вот и  ответ на вопрос, зачем нужно делать расчет расхода теплоносителя в системе отопления.

В идеале, всеми расчетами должны заниматься специалисты с инженерным образованием. Но не всегда есть возможность найти специалиста. Используя формулы и таблицы, можно сделать расчёт и самостоятельно. После того, как будет определена мощность циркуляционного насоса нужной производительности, его можно подобрать в каталоге.

Если появятся сомнения в расчётах, то нужно обратить внимание на приборы, у которых производительность регулируется. В таком случае небольшие неточности в расчётах уже не будут иметь столь принципиального значения.. https://www.youtube.com/embed/TGcQpF5AZPE

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Руландия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: